Arduino徽標Arduino ABX00087 UNO R4 WiFi Development Board

ABX00087 UNO R4 WiFi 開發板

Cricket Shot Recognition using Arduino UNO R4 WiFi + ADXL345 + Edge
衝動
This document provides a complete workflow for building a cricket shot recognition system using Arduino UNO R4 WiFi with an ADXL345 accelerometer and Edge Impulse Studio. The project involves collecting accelerometer data, training a machine learning model, and deploying the trained model back to the Arduino for real-time shot classification.
Cricket shots considered in this project:
– Cover Drive
– Straight Drive
– Pull Shot

第 1 步:硬體需求

– Arduino UNO R4 WiFi
– ADXL345 Accelerometer (I2C)
– Jumper wires
– Breadboard (optional)
– USB Type-C 數據線

步驟 2:軟體需求

– Arduino IDE (latest)
– Edge Impulse Studio account (free)
– Edge Impulse CLI tools (Node.js required)
– Adafruit ADXL345 library

Step 3: Wiring the ADXL345

Connect the ADXL345 sensor to the Arduino UNO R4 WiFi as follows:
VCC → 3.3V
接地 → 接地
SDA → SDA (A4)
SCL → SCL (A5)
CS → 3.3V (optional, for I2C mode)
SDO → floating or GNDArduino ABX00087 UNO R4 WiFi Development Board - overview

Step 4: Make IDE Sensor Ready

如何在Arduino IDE中安裝感測器庫?
打開 Arduino IDE
Open Tools → Manage Libraries… and install: Adafruit ADXL345 Unified Adafruit Unified Sensor
(If you have LSM6DSO or MPU6050 instead: install SparkFun LSM6DSO , Adafruit LSM6DS or MPU6050 accordingly.)

Step 5: Arduino Sketch for Data Collection

Upload this sketch to your Arduino UNO R4 WiFi. It streams accelerometer data in CSV format (x,y,z) at ~18 Hz for Edge Impulse.
#包括
#include <Adafruit_ADXL345_U.h>
Adafruit_ADXL345_Unified accel =
Adafruit_ADXL345_Unified(12345);
無效設定(){
串列.開始(115200);
if (!accel.begin()) {
Serial.println(“No ADXL345 detected”);
而(1);
}
accel.setRange(ADXL345_RANGE_4_G);
}
無效循環(){
sensors_event_t e;
accel.getEvent(&e);
Serial.print (e.acceleration.x);
Serial.print(“,”);
Serial.print(e.acceleration.y);
Serial.print(“,”);
Serial.println(e.acceleration.z);delay(55); // ~18 Hz
}

Set Up Edge Impulse

Arduino ABX00087 UNO R4 WiFi Development Board - Set Up

Step 6: Connecting to Edge Impulse

  1. Close Arduino Serial Monitor.
  2. Run the command: edge-impulse-data-forwarder –frequency 18
  3. Enter axis names: accX, accY, accZ
  4. Name your device: Arduino-Cricket-Board
  5. Confirm connection in Edge Impulse Studio under ‘Devices’.

Arduino ABX00087 UNO R4 WiFi Development Board - Connecting to Edge ImpulseArduino ABX00087 UNO R4 WiFi Development Board - Connecting to Edge Impulse 1

步驟7:數據收集

In Edge Impulse Studio → Data acquisition:
– Device: Arduino-Cricket-Board
– Sensor: Accelerometer (3 axes)
– Sample length: 2000 ms (2 seconds)
– 頻率:18 Hz
Record at least 40 samples per class:
– Cover Drive
– Straight Drive
– Pull ShotArduino ABX00087 UNO R4 WiFi Development Board - Data CollectionCollect Data Examp萊斯
蓋驅動器
Device: Arduino-Cricket-Board
Label: Cover Drive
Sensor: Sensor with 3 axes (accX, accY, accZ)
Sample length: 10000ms
頻率:18赫茲
Example Raw Data:
accX -0.32
accY 9.61
accZ -0.12
Straight Drive
Device: Arduino-Cricket-Board
Label: Straight Drive
Sensor: Sensor with 3 axes (accX, accY, accZ)
Sample length: 10000ms
頻率:18赫茲
Example Raw Data:
accX 1.24
accY 8.93
accZ -0.42
Pull Shot
Device: Arduino-Cricket-Board
Label: Pull Shot
Sensor: Sensor with 3 axes (accX, accY, accZ)
Sample length:10000 ms
頻率:18赫茲
Example Raw Data:
accX 2.01
accY 7.84
accZ -0.63 Arduino ABX00087 UNO R4 WiFi Development Board - Data Collection 1

Step 8: Impulse Design

Open Create impulse:
輸入模組:時間序列資料(3 個軸)。
Window size: 1000 ms Window increase (stride): 200 ms Enable: Axes, Magnitude (optional), frequency 18.
Processing block: Spectral analysis (a.k.a. Spectral Features for motion). Window size: 1000 ms Window increase (stride): 200 ms Enable: Axes, Magnitude (optional), keep all defaults first.
學習模組:分類(Keras)。
點選儲存衝動控制。 Arduino ABX00087 UNO R4 WiFi Development Board - Impulse Design

Generate features:
進入光譜分析,點選儲存參數,然後產生訓練集的特徵。

Arduino ABX00087 UNO R4 WiFi Development Board - training set

Train a small model
Go to Classifier (Keras) and use a compact config like:
Neural network: 1–2 dense layers (e.g., 60 → 30), ReLU
Epochs: 40–60
Learning rate: 0.001–0.005
Batch size: 32
Data split: 80/20 (train/test)
Save and train the dataArduino ABX00087 UNO R4 WiFi Development Board - Save and train the data

Evaluate and Check Model testing with the holdout set.
Inspect the confusion matrix; if circle and up overlap, collect more diverse data or tweak
Spectral parameters (window size / noise floor).

Step 9: Deployment to Arduino

Go to Deployment:
Choose Arduino library (C++ library also works).
啟用 EON 編譯器(如果可用)以縮小模型大小。 Arduino ABX00087 UNO R4 WiFi Development Board - Deployment to ArduinoDownload the .zip, then in Arduino IDE: Sketch → Include Library → Add .ZIP Library… This adds examp類似靜態緩衝區和連續緩衝區 File → 前amp萊斯 →
Your Project Name – Edge Impulse. Inference sketch for Arduino UNO EK R4 WiFi + ADXL345.

Step 10: Arduino Inference Sketch

#包括
#include <Adafruit_ADXL345_Unified.h>
#include <your_project_inference.h> // Replace with Edge Impulse header
Adafruit_ADXL345_Unified accel =
Adafruit_ADXL345_Unified(12345);
static bool debug_nn = false;
無效設定(){
串列.開始(115200);
while (!Serial) {}
if (!accel.begin()) {
Serial.println(“ERROR: ADXL345 not detected”);
而(1);
}
accel.setRange(ADXL345_RANGE_4_G);
}
無效循環(){
float buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE] = {0};
for (size_t ix = 0; ix < EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE; ix +=
3) {
uint64_t next_tick = micros() + (EI_CLASSIFIER_INTERVAL_MS *
1000);
sensors_event_t e;
accel.getEvent(&e);
buffer[ix + 0] = e.acceleration.x;
buffer[ix + 1] = e.acceleration.y;
buffer[ix + 2] = e.acceleration.z;
int32_t wait = (int32_t)(next_tick – micros());
if (wait > 0) delayMicroseconds(wait);
}
signal_t signal;
int err = numpy::signal_from_buffer(buffer,
EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, &signal);
if (err != 0) return;

ei_impulse_result_t result = {0};
EI_IMPULSE_ERROR res = run_classifier(&signal, &result,
debug_nn);
if (res != EI_IMPULSE_OK) return;

for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
ei_printf(“%s: %.3f “, result.classification[ix].label,
result.classification[ix].value);
}
#if EI_CLASSIFIER_HAS_ANOMALY == 1
ei_printf(“anomaly: %.3f”, result.anomaly);
#endif
ei_printf(“\n”);
}

輸出前amp樂:

Arduino ABX00087 UNO R4 WiFi Development Board - Arduino Inference Sketch尖端:
請確保 EI_CLASSIFIER_INTERVAL_MS 與資料轉發器的頻率保持同步(例如,100 Hz → 10 ms)。 Edge Impulse 庫會根據您的脈衝自動設定此常數。
如果您想要連續檢測(滑動視窗),請從連續檢測範例開始。ample 包含在 EI 庫中,並在 ADXL345 讀取中進行交換。
We will be adding video tutorials soon; till then, stay tuned – https://www.youtube.com/@RobuInlabs
And If you still have some doubts, you can check out this video by Edged Impulse: https://www.youtube.com/watch?v=FseGCn-oBA0&t=468s

Arduino徽標

文件/資源

Arduino ABX00087 UNO R4 WiFi Development Board [pdf] 使用者指南
R4 WiFi, ADXL345, ABX00087 UNO R4 WiFi Development Board, ABX00087, UNO R4 WiFi Development Board, WiFi Development Board, Development Board, Board

參考

發表評論

您的電子郵件地址不會被公開。 必填欄位已標記 *